
Test Results and PQIA Assessment
Product: Hot Shot’s Secret Green Diamond Fleet Semi-Synthetic
Viscosity Grade: SAE 15W-40
Manufactured By: Lubrication Specialties, Inc.
Purchased at: Amazon
Date of purchase: 3-7-2021
Website(s): lubricationspecialties.com
Website(s): hotshotsecret.com
Test Results and PQIA Assessment
The results of the tests conducted on this sample meet the SAE J300 specifications for the SAE Viscosity Grade listed on the product label.
Physical Properties

Elemental Analysis

Labeling

Note: Where the back label on this product list a number of specifications following the statement “For use in all diesel applications meeting all required industry specs including…,” the labels do not display the API Donut certifying that it meets the performance requirements set by the API and subject to quality testing conducted by the API’s Aftermarket Audit Program (AMAP). Further, while test results show this product meets the specifications for an SAE 15W-40 viscosity grade, the viscosity grade declaration on the labels do not comply with the Uniform Regulation for the Method of Sale of Commodities in NIST Handbook 130 (HB-130) which requires that the viscosity grade shown on the labels is preceded by “SAE”
Although the laboratory tests conducted on this sample cannot be used alone to establish if the product tested meets a given API Service Category, they can be used to determine if it does not. The test results and PQIA assessment relates ONLY to the sample tested and the tests conducted.




Viscosity is a critical measure that determines how thick or thin a lubricant is. Viscosity is measured by several methods to determine the behavior of motor oil during cold startups and while hot at operating temperatures. Motor oils must meet Society of Automotive Engineers (SAE) J-300 standards to conform to a specific viscosity grade. >>More
Viscosity Index measures the change in viscosity with temperature. Viscosity Index improver additives are used to optimize viscosity at different temperatures. >>More





Detergent additives help to keep metal surfaces in an engine clean by controlling formation of deposits (i.e. sludge, varnishes). Such deposits can harm an engine by clogging oil passages that lubricate an engine, increase wear and reduce engine performance. A blend of calcium and magnesium-based detergents are most commonly used. A shift towards increased use of magnesium was required to address the needs of new gasoline direct injected (GDI) engines. >>More
Detergent additives also help prevent corrosive wear by neutralizing acids formed as a by-product of combustion and other processes in an engine. Total Base Number (TBN) is a laboratory test that measures an oil’s ability to neutralize such acids. >>More





Antiwear (AW) additives help protect metal surfaces against impact friction and wear between moving parts in an engine. Such additives work by adhering to metal surfaces and forming a protective film between moving surfaces. The most widely used AW additive are chemistries containing phosphorus and zinc. Some lubricant manufacturers also employ the use of antiwear additives containing boron, molybdenum and titanium among others.
Antiwear additives are multifunctional in that they also act as corrosion inhibitors and, more significantly, antioxidants.
For more on AW additives and other functional and performance additives used in motor oil… >>More















Although motor oil is subject to contamination from a number of metals related to wear, and abrasive material in the form of silicon when in use, new motor oil typically does not contain such metals at any appreciable levels. The presence of these metals (iron, aluminum, copper, lead, nickel, tin, sodium, potassium, etc.) in a new motor oil can indicate contamination from used oil, rust, abrasives, and others introduced to the product during blending, packaging, and/or transportation. Such contaminants can be harmful to an engine. Some can also be part of an additive, such as copper or sodium, but these are not often seen.
*Whereas silicon in the form of polydimethylpolysiloxane is commonly used as an antifoamant in motor oil, such use typically does not exceed 10ppm in new motor oil. Levels much above indicate possible contamination with abrasive material, silicone-based sealers, and/or transformer and hydraulic oil.
Note1: Standards are established by API, SAE and others.
Note2: Test Method for metal analysis is ASTM D5185.
- This specification is expressed to one significant figure, therefore results above 550 is considered on specification.
Viscosity is a critical measure that determines how thick or thin a lubricant is. Viscosity is measured by several methods to determine the behavior of motor oil during cold startups and while hot at operating temperatures. Motor oils must meet Society of Automotive Engineers (SAE) J-300 standards to conform to a specific viscosity grade. >>More
Viscosity Index measures the change in viscosity with temperature. Viscosity Index improver additives are used to optimize viscosity at different temperatures. >>More
Detergent additives help to keep metal surfaces in an engine clean by controlling formation of deposits (i.e. sludge, varnishes). Such deposits can harm an engine by clogging oil passages that lubricate an engine, increase wear and reduce engine performance. A blend of calcium and magnesium-based detergents are most commonly used. A shift towards increased use of magnesium was required to address the needs of new gasoline direct injected (GDI) engines.
Detergent additives also help prevent corrosive wear by neutralizing acids formed as a by-product of combustion and other processes in an engine. Total Base Number (TBN) is a laboratory test that measures an oil’s ability to neutralize such acids. >>More
Antiwear (AW) additives help protect metal surfaces against impact friction and wear between moving parts in an engine. Such additives work by adhering to metal surfaces and forming a protective film between moving surfaces. The most widely used AW additive are chemistries containing phosphorus and zinc. Some lubricant manufacturers also employ the use of antiwear additives containing boron, molybdenum and titanium among others.
Antiwear additives are multifunctional in that they also act as corrosion inhibitors and, more significantly, antioxidants.
For more on AW additives and other functional and performance additives used in motor oil… >>More
Contaminants: Although motor oil is subject to contamination from a number of metals related to wear, and abrasive material in the form of silicon when in use, new motor oil typically does not contain such metals at any appreciable levels. The presence of these metals (iron, aluminum, copper, lead, nickel, tin, sodium, potassium, etc.) in a new motor oil can indicate contamination from used oil, rust, abrasives, and others introduced to the product during blending, packaging, and/or transportation. Such contaminants can be harmful to an engine. Some can also be part of an additive, such as copper or sodium, but these are not often seen these days.
*Whereas silicon in the form of polydimethylpolysiloxane is commonly used as an antifoamant in motor oil, such use typically does not exceed 10ppm in new motor oil. Levels much above indicate possible contamination with abrasive material, silicone-based sealers, and/or transformer and hydraulic oil.