
Test Results and PQIA Assessment
Product: Sgt. P Motor Oil
Viscosity Grade: SAE 5W-20
Labeled: API SN/ILSAC GF-5
Manufactured By: Voltek Lubricants, Distributed by Sgt. P Brands, Chicago, IL
Purchased at: Niles, MI
Date of purchase: 11/24/2020
Website(s): sgtpbrands.com
Test Results and PQIA Assessment

Physical Properties

Elemental Analysis

Labeling

Use of this product in virtually all automobile engines will likely cause harm to the engine.
The results of the tests conducted on this sample do NOT meet the SAE J300 specifications for the SAE 5W-30 Viscosity Grade listed on the product labels, and are NOT consistent with the labeled API Service Categories. In addition, the organometallic additive levels in this sample are much lower than typical for API SN, or GF-5 oils.
The result of the sample tested in fact show that this product contains no meaningful level of additives to protect an engine. For these reasons, it is NOT suitable for use in virtually all automobile engines currently on the road and will likely cause harm to an engine if used.
Where the Sgt. P product examined displays the API Engine Oil Quality Marks, the product is not shown in the API EOLCS Licensee Directory as a licensed motor oil. The label on this product lists Volek Lubricants as the manufacturer, however, the API EOLCS Licensee Directory shows “No records to display” under products for Voltek Lubricants. See API EOLCS Licensee Directory
Although the laboratory tests conducted on this sample cannot be used alone to establish if the product tested meets a given API Service Category, they can be used to determine if it does not. The test results and PQIA assessment relates ONLY to the sample tested and the tests conducted.




Viscosity is a critical measure that determines how thick or thin a lubricant is. Viscosity is measured by several methods to determine the behavior of motor oil during cold startups and while hot at operating temperatures. Motor oils must meet Society of Automotive Engineers (SAE) J-300 standards to conform to a specific viscosity grade. >>More
Viscosity Index measures the change in viscosity with temperature. Viscosity Index improver additives are used to optimize viscosity at different temperatures. >>More





Detergent additives help to keep metal surfaces in an engine clean by controlling formation of deposits (i.e. sludge, varnishes). Such deposits can harm an engine by clogging oil passages that lubricate an engine, increase wear and reduce engine performance. A blend of calcium and magnesium-based detergents are most commonly used. A shift towards increased use of magnesium was required to address the needs of new gasoline direct injected (GDI) engines. >>More
Detergent additives also help prevent corrosive wear by neutralizing acids formed as a by-product of combustion and other processes in an engine. Total Base Number (TBN) is a laboratory test that measures an oil’s ability to neutralize such acids. >>More





Antiwear (AW) additives help protect metal surfaces against impact friction and wear between moving parts in an engine. Such additives work by adhering to metal surfaces and forming a protective film between moving surfaces. The most widely used AW additive are chemistries containing phosphorus and zinc. Some lubricant manufacturers also employ the use of antiwear additives containing boron, molybdenum and titanium among others.
Antiwear additives are multifunctional in that they also act as corrosion inhibitors and, more significantly, antioxidants.
For more on AW additives and other functional and performance additives used in motor oil… >>More















Although motor oil is subject to contamination from a number of metals related to wear, and abrasive material in the form of silicon when in use, new motor oil typically does not contain such metals at any appreciable levels. The presence of these metals (iron, aluminum, copper, lead, nickel, tin, sodium, potassium, etc.) in a new motor oil can indicate contamination from used oil, rust, abrasives, and others introduced to the product during blending, packaging, and/or transportation. Such contaminants can be harmful to an engine. Some can also be part of an additive, such as copper or sodium, but these are not often seen.
*Whereas silicon in the form of polydimethylpolysiloxane is commonly used as an antifoamant in motor oil, such use typically does not exceed 10ppm in new motor oil. Levels much above indicate possible contamination with abrasive material, silicone-based sealers, and/or transformer and hydraulic oil.
Note1: Standards are established by API, SAE and others.
Note2: Test Method for metal analysis is ASTM D5185.
- This specification is expressed to one significant figure, therefore results between 550 and 849 are considered on specification.
Viscosity is a critical measure that determines how thick or thin a lubricant is. Viscosity is measured by several methods to determine the behavior of motor oil during cold startups and while hot at operating temperatures. Motor oils must meet Society of Automotive Engineers (SAE) J-300 standards to conform to a specific viscosity grade. >>More
Viscosity Index measures the change in viscosity with temperature. Viscosity Index improver additives are used to optimize viscosity at different temperatures. >>More
Detergent additives help to keep metal surfaces in an engine clean by controlling formation of deposits (i.e. sludge, varnishes). Such deposits can harm an engine by clogging oil passages that lubricate an engine, increase wear and reduce engine performance. A blend of calcium and magnesium-based detergents are most commonly used. A shift towards increased use of magnesium was required to address the needs of new gasoline direct injected (GDI) engines.
Detergent additives also help prevent corrosive wear by neutralizing acids formed as a by-product of combustion and other processes in an engine. Total Base Number (TBN) is a laboratory test that measures an oil’s ability to neutralize such acids. >>More
Antiwear (AW) additives help protect metal surfaces against impact friction and wear between moving parts in an engine. Such additives work by adhering to metal surfaces and forming a protective film between moving surfaces. The most widely used AW additive are chemistries containing phosphorus and zinc. Some lubricant manufacturers also employ the use of antiwear additives containing boron, molybdenum and titanium among others.
Antiwear additives are multifunctional in that they also act as corrosion inhibitors and, more significantly, antioxidants.
For more on AW additives and other functional and performance additives used in motor oil… >>More
Contaminants: Although motor oil is subject to contamination from a number of metals related to wear, and abrasive material in the form of silicon when in use, new motor oil typically does not contain such metals at any appreciable levels. The presence of these metals (iron, aluminum, copper, lead, nickel, tin, sodium, potassium, etc.) in a new motor oil can indicate contamination from used oil, rust, abrasives, and others introduced to the product during blending, packaging, and/or transportation. Such contaminants can be harmful to an engine. Some can also be part of an additive, such as copper or sodium, but these are not often seen these days.
*Whereas silicon in the form of polydimethylpolysiloxane is commonly used as an antifoamant in motor oil, such use typically does not exceed 10ppm in new motor oil. Levels much above indicate possible contamination with abrasive material, silicone-based sealers, and/or transformer and hydraulic oil.